
JANUARY 2009 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

(a). Consider

A := {n ∈ N | n > 2}

B := {n+ 1/n | n ∈ N, n > 2}

These are both obviously closed and disjoint, however,

d(A,B) = inf{1/n | n > 2} = 0

(b). By definition of infimum, for each n ∈ N, there exists (an, bn) ∈

A×B such that

ρ(an, bn) < d(A,B) + 1/n

As B is compact, bn has a convergent subsequence bnk
→ b ∈ B. If

d(A,B) = 0, by construction we have that

d(ank
, bnk

)→ 0

in which case b ∈ A, and, as A is closed, b ∈ A, contradicting the fact

that A and B are disjoint. Thus d(A,B) > 0.
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2. Problem 2

(a). Set f(t) := tp

p
+ 1

p′
−1. We see that f ′(t) = tp−1−1 has a real root

at t = 1 and is positive for t > 1, so that t is a minimum. Plugging in

t = 1,

f(1) = 0

So that we may take t = a

b
1

p−1
to see:

f

(
a

b
1

p−1

)
=

ap

pb
p

p−1

+
1

p′
− a

b
1

p−1

> 0

=⇒ ap

p
+
bp
′

p′
> ab

With equality if and only if a = b
1

p−1 .

(b). Now, without loss of generality we may assume (by homogeneity)( ∞∑
k=1

|xk|p
)1/p

=
( ∞∑
k=1

|yk|q
)1/q

= 1

Using Young’s inequality (as proved above):

∞∑
k=1

|xkyk| 6
∞∑
k=1

( |xk|p
p

+
|yk|q

q

)

=
1

p

∞∑
k=1

|xk|p +
1

q

∞∑
k=1

|yk|q

=
1

p
+

1

q
= 1

Yielding Hölder’s inequality.

(c). Mimicking the previous part, we may again assume that ||f ||p =

||g||q = 1, where 1
p

+ 1
q

= 1. Then,
ˆ
X

|fg|dµ 6
||f ||pp
p

+
||g||qq
q

=
1

p
+

1

q
= 1

Which yields Hölder’s inequality.
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3. Problem 3

(a). Recall the construction of the Cantor set C =
⋂
n>1Cn, where

each Cn is the nth iteration of removing the middle thirds. Then, by

definition we have

µ(Cn) =
(2

3

)n
Lettng n→∞,

µ(C) = lim
n→∞

(2

3

)n
= 0

(b). Note that 1/4 = 0.0202020 . . . in ternary, in which case 1/4 ∈ C

by definition. Since this decimal expansion never terminates, however,

1/4 cannot be the endpoint of any of the Cn.

(c). Simply note that C is in bijection with {0, 2}N, since the Cantor

set consists of all numbers whose ternary expansion consists only of the

numbers 0 and 2. As {0, 2}N is uncountable, C is also uncountable.

4. Problem 4

(a). f is absolutely continuous if for all ε > 0 there exists δ such that

for all sets of open intervals {(ak, bk)} with

N∑
k=1

bk − ak < δ

we have that
N∑
k=1

|f(bk)− f(ak)| < ε

(b). Let ε > 0. Assume that g is monotone increasing. Then, there

exists δ1 such that for all open intervals {(ck, dk)} in (c, d) with

N∑
k=1

dk − ck
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we have
N∑
k=1

|f(dk)− f(ck)| < ε

Similarly, as g is absolutely continuous there exists δ2 such that for all

open intervals {(ak, bk} with

N∑
k=1

bk − ak < δ2

we have
N∑
k=1

|g(bk)− g(ak)| < δ1

Since g is monotonically increasing,

|g(bk)− g(ak)| = g(bk)− g(ak)

Whence the set of intervals {(g(ak), g(bk))} satisfies

N∑
k=1

g(bk)− g(ak) < δ1

so that
N∑
k=1

|f(g(bk))− f(g(ak))| < ε

Implying that f ◦ g is absolutely continuous.

5. Problem 5

We first establish the claim for characteristic functions on some open

interval. We see:ˆ
R
χ(a,b) cos(nx)dx =

ˆ b

a

cos(nx)dx

=
cos(nb)− cos(na)

n

→ 0 as n→∞
Similarly, consider a step function

s =
N∑
k=1

ckχ(ak,bk)
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We see ˆ
R
s cos(nx)dx =

N∑
k=1

ˆ bk

ak

cos(nx)dx∑N
k=1 cos(nbk)− cos(nak)

n

→ 0 as n→∞

Now let ε > 0. By density of step functions in L1, there exists a step

function s with

||f − s||1 <
ε

2

Similarly, by the above, there exists N ∈ N such that for all n > N ,ˆ
R
g cos(nx)dx < ε/2∣∣∣ ˆ

R
f(x) cos(nx)dx

∣∣∣ 6 ˆ
R
|f − g|dx+

∣∣∣ˆ
R
g(x) cos(nx)dx

∣∣∣
<
ε

2
+
ε

2
= ε

Whence the result follows immediately.

6. Problem 6

Note that the inequality

sup
x∈R
|f ∗ g(x)| 6 ||f ||p||g||q

implies the existence of f ∗ g(x) for all x since it is finite everywhere.

By Hölder’s inequality,∣∣∣ ˆ
R
f(x− y)g(y)dy

∣∣∣ 6 (ˆ
R
|f(x− y)|pdy

)1/p(ˆ
R
|g(y)|qdz

)1/q
= ||f ||p||g||q

Taking the supremum over all x,

sup
x∈R
|f ∗ g(x)| 6 ||f ||p||g||q

as contended.
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7. Problem 7

(a). We have

f(a) =
1

2πi

ˆ
C

f(z)

z − a
dz

f (n)(a) =
n!

2πi

ˆ
C

f(z)

(z − a)n+1
dz

(b). Assume |f(z)| 6 M . By holomorphicicty, we have a power series

expansion

f(z) =
∑
n>0

anz
n

where

an =
1

2πi

ˆ
Br(0)

f(z)

zn+1
dz

Consider now for n > 1,

|an| 6
1

2π

ˆ
Br(0)

|f(z)|
|z|n+1

dz

=
1

2πrn+1

ˆ
Br(0)

|f(z)|dz

6
1

2πrn+1
·M · 2πr

=
M

rn

As f is entire, we may take r →∞ to find that |an| = 0 for all n > 1;

that is, f ≡ a0, so that f is constant.

8. Problem 8

Assume n > 0 and p is monic. Then, if p has no roots, 1/p(z) is

entire as the denominator never vanishes.

Setting M :=
∑n

i=0 |ai|,

|P (z)| > |z|n − (M − 1)|z|n−1

= |z|n−1(|z| −M + 1)
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In which case, for |z| >M ,

1

|P (z)|
6

1

Mn−1

Similarly, for |z| 6 M , we see that by compactness of the closed ball

of radius M , |P (z)| achieves its minimum. If this minimum were 0,

then P (z) = 0, contradicting our assumption. Thus, P (z) > m > 0

for |z| 6 M . This then implies that 1/P (z) is bounded everywhere,

and by Louville’s theorem, constant. Since we assumed n > 0, this is

a contradiction.

Then, P (z) has at least one root, say z1. Now, continue inductively

and apply the above argument to P (z)
(z−z1) to see that P must have pre-

cisely n zeroes, counting multiplicity.

The next questions came from a second version of this qual-

ifying exam; the rest of the questions were the same.

9. Problem 6

Let f(z) and g(z) be analytic within and on a simple closed contour

C with |g(z)| < |f(z)| on C. Assume f does not vanish on C. Then,

f(z) and f(z) + g(z) have the same number of zeroes inside C.

Now, set f(z) := z5 and g(z) := 3z + 1. Then, on the boundary of

the disk of radius 2,

|f(z)| = 32

> 7

> |3z + 1| = |g(z)|

Obviously f has 5 zeroes within B2(0), so that employing Rouché’s

theorem, we deduce that f(z) + g(z) = z5 + 3z + 1 has 5 zeroes within

B2(0) as well.
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10. Problem 8

Make the change of variable

z = eiθ,
dz

iz
= dθ

sin2(θ) = −(z2 − 1)2

4z2
, cos(z) =

(z2 + 1)

2z

And, ˆ 2π

0

sin2(θ)

5 + 4 cos(θ)
dθ =

ˆ
B1(0)

i(z2 − 1)2

4z2(2z2 + 5z + 2)
dz

Then, 2z2 + 5z + 2 has zeroes at −2 and −1/2; only −1/2 lies within

our contour, so we compute the residues at 0 and −1/2. We find

Res
( i(z2 − 1)2

4z2(2z2 + 5z + 2)
, 0
)

=
−5

16

Res
( i(z2 − 1)2

4z2(2z2 + 5z + 2)
,
−1

2

)
=

3

16

Whence by Cauchy’s Residue theorem,ˆ
B1(0)

i(z2 − 1)2

4z2(2z2 + 5z + 2)
dz =

π

4

so that ˆ 2π

0

sin2(θ)

5 + 4 cos(θ)
dθ =

π

4


