JANUARY 2009 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1
(a). Consider
A={neN|n>2}
B:={n+1/n|neN, n>2}
These are both obviously closed and disjoint, however,

d(A,B) =inf{l/n|n>2}=0

(b). By definition of infimum, for each n € N, there exists (an,b,) €
A x B such that

plan, b,) < d(A,B)+1/n

As B is compact, b, has a convergent subsequence b,, — b € B. If

d(A, B) = 0, by construction we have that
d(an,,by,) — 0

in which case b € A, and, as A is closed, b € A, contradicting the fact
that A and B are disjoint. Thus d(A4, B) > 0.
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2. PROBLEM 2

(a). Set f(t) = —+ L —1. We see that f'(t) = tP~! — 1 has a real root
at t = 1 and is positive for ¢ > 1, so that ¢ is a minimum. Plugging in
t=1,
f)=0
So that we may take t = —4— to see
bP-
a a? 1 a
f( 1 > =—= 1t 5 - = 20
br—T1 pbr=1 P b1
a’ b
— — + — Z > ab
p p

With equality if and only if a = =

(b). Now, without loss of generality we may assume (by homogeneity)

> 1/p > 1/q
(D lael?) ™ = (X lwel?) =1
k=1 k=1

Using Young’s inequality (as proved above):

Z o] < Z (b u)

p q
=—Z|xk|p+1i|yk|q
pk‘:l qk:l
1 1
p q

Yielding Holder’s inequality.

(¢). Mimicking the previous part, we may again assume that ||f||, =

= 1,1 __
Hqu = 1, where s + .= 1. Then,

p q
/ Fold < A1 N |lgll2
X p

q
1 1
p g

Which yields Holder’s inequality.
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3. PROBLEM 3

(a). Recall the construction of the Cantor set C' = [, -, Cy, where
each (), is the nth iteration of removing the middle thirds. Then, by

definition we have

Lettng n — oo,

pu(C) = lim <g>n =0

n—oo \3

(b). Note that 1/4 = 0.0202020... in ternary, in which case 1/4 € C'
by definition. Since this decimal expansion never terminates, however,

1/4 cannot be the endpoint of any of the C,.

(c). Simply note that C is in bijection with {0,2}", since the Cantor
set consists of all numbers whose ternary expansion consists only of the

numbers 0 and 2. As {0,2}" is uncountable, C'is also uncountable.

4. PROBLEM 4

(a). f is absolutely continuous if for all € > 0 there exists ¢ such that

for all sets of open intervals {(ay, by)} with

N
Zbk—ak<5
k=1

we have that

|f(br) — flaw)| <€

WE

k=1
(b). Let € > 0. Assume that g is monotone increasing. Then, there

exists d; such that for all open intervals {(cx, dy)} in (¢, d) with

N
E di, — cx,
k=1
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we have

Z|fdk flen)| <e

Similarly, as g is absolutely continuous there exists d5 such that for all

open intervals {(ag, by} with

N
Zbk —ap < (52
k=1

we have

Z ’g bk ak ’ < 51
Since g is monotonically mcreasmg,
19(br) — g(ar)| = g(bx) — g(ax)

Whence the set of intervals {(g(ax), g(bx))} satisfies

> glbr) — glax) < &

k=1
so that

D 1 (ar)) = flglar))| < e

Implying that f o g is absolutely continuous.

5. PROBLEM b5

We first establish the claim for characteristic functions on some open

interval. We see:

b
/X(a,b) COS(n:B)d:BZ/ cos(nx)dx
R a

cos(nb) — cos(na)

n
—0asn— o

Similarly, consider a step function

N
5= CXaw )
k=1
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We see

N by,
/ scos(nz)dr = Z/ cos(nx)dx
R k=1 @k

SV, cos(nby) — cos(nay)

n

—+0asn— o0
Now let € > 0. By density of step functions in L', there exists a step

function s with

€
1 =il < 5

Similarly, by the above, there exists N € N such that for all n > N,

/gcos(n:c)d:c <€/2

| [ s)costualas] < [ 17 = glar+ | [ gtocosuois

<6+€
— — =€
2 2

Whence the result follows immediately.

6. PROBLEM 6
Note that the inequality

sup [+ g(z)| < [[fllpll9llq
z€eR

implies the existence of f * g(x) for all = since it is finite everywhere.

By Holder’s inequality,

| [t —wtwan] < ([ 15— vpras) ([ otra:)”
— 111l llgll,

Taking the supremum over all z,

sxelglf*g(xﬂ < |[I1lllgllq

as contended.
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7. PROBLEM 7

(a). We have
flay = L [ LB,

21 Joz —a

n ! /

(b). Assume |f(z)| < M. By holomorphicicty, we have a power series

expansion

where

o= L / 1),
"o Zntl
B, (0)

Consider now for n > 1,

1
la,| < —/ Mdz
21 /() 121"

1
— d
il /Br(o) | f(2)]d=
1
S o - M - 27r
B M
=

As f is entire, we may take r — oo to find that |a,| = 0 for all n > 1;

that is, f = ag, so that f is constant.

8. PROBLEM 8

Assume n > 0 and p is monic. Then, if p has no roots, 1/p(z) is
entire as the denominator never vanishes.
Setting M =3 "" , |ai,
[P(2)] = |2]" = (M = 1)][""

= 2" (|2l = M + 1)
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In which case, for |z| > M,

Lo
[P(2)] ~ Mt

Similarly, for |z] < M, we see that by compactness of the closed ball
of radius M, |P(z)| achieves its minimum. If this minimum were 0,
then P(z) = 0, contradicting our assumption. Thus, P(z) > m > 0
for |z| < M. This then implies that 1/P(z) is bounded everywhere,
and by Louville’s theorem, constant. Since we assumed n > 0, this is
a contradiction.

Then, P(z) has at least one root, say z;. Now, continue inductively

and apply the above argument to (5—(2)

to see that P must have pre-
cisely n zeroes, counting multiplicity.
The next questions came from a second version of this qual-

ifying exam; the rest of the questions were the same.

9. PROBLEM 6

Let f(z) and g(z) be analytic within and on a simple closed contour
C with |g(2)| < |f(z)| on C. Assume f does not vanish on C. Then,
f(2) and f(2) 4+ g(z) have the same number of zeroes inside C.

Now, set f(z) := 2° and ¢(z) := 3z + 1. Then, on the boundary of
the disk of radius 2,

[f(2)] = 32
> 7
> 32+ 1| = |g(2)]
Obviously f has 5 zeroes within By(0), so that employing Rouché’s
theorem, we deduce that f(z) + g(z) = 2° + 32+ 1 has 5 zeroes within
B5(0) as well.
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10. PROBLEM &

Make the change of variable

(2*+1)
2z

or o2 (.2 12
/ sin®(0) 40 — / i(z*—1) &
o D+4cos(h) Bi(o) 422(22% + 52 + 2)

Then, 222 4+ 5z + 2 has zeroes at —2 and —1/2; only —1/2 lies within

sin?(f) = ——~———", cos(z) =

And,

our contour, so we compute the residues at 0 and —1/2. We find
i(2%2 —1)2 0) =5
422(222 + 52+ 2)’ 16
i(2% — 1) -1\ 3
422(22%2 + 52+ 2)’ 7) T 16
Whence by Cauchy’s Residue theorem,

Res (

Res (

/ (22— 1) gy
z=—
By 422(22% + 52 + 2) 4

/2” sin?() T
_ V) =L
o D+4cos(0)

so that

W



